Math 4650 - Homework # 4 Limits of functions

Part 1 - Computations

1. For each $f: D \to \mathbb{R}$, a, L, and ϵ given, find a specific $\delta > 0$ so that if $x \in D$ and $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Draw a picture incorporating everything.

- (a) $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x, a = 2, L = 2, $\epsilon = 0.01$.
- (b) $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=1/x,\,a=1,\,L=1,\,\epsilon=0.1.$

Part 2 - Proofs

2. Prove the following limit exists using the $\epsilon - \delta$ definition of limit.

(a)
$$\lim_{x \to -1} (2x + 5) = 3$$

(b)
$$\lim_{x \to 1} \frac{5x}{x+3} = \frac{5}{4}$$

(c)
$$\lim_{x\to 2} x^4$$

(d)
$$\lim_{x \to 1} \frac{1}{x^2}$$

(e)
$$\lim_{x \to 2} (x^3 - 1)$$

3. (Limits are unique)

Prove that if $f: D \to \mathbb{R}$ and a is a limit point of D with $\lim_{x \to a} f(x) = L_1$ and $\lim_{x \to a} f(x) = L_2$, then $L_1 = L_2$.

- 4. Let $f: D \to \mathbb{R}$ be a function. Suppose that $\lim_{x \to a} f(x) = L$ where $L \neq 0$. Prove that there exists $\delta > 0$ where if $x \in D$ and $0 < |x a| < \delta$, then |f(x)| > 0.
- 5. (A function with a limit at a must be bounded near a)

Let $f: D \to \mathbb{R}$ be a function and a be a limit point of D. Suppose that $\lim_{x\to a} f(x)$ exists. Prove that there exists M>0 and $\delta>0$ such that if $x\in D$ and $0<|x-a|<\delta$, then |f(x)|< M.

- 6. (a) Let $D \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$. Prove that a is a limit point of D if and only if there exists a sequence (x_n) contained in D with $x_n \neq a$ for all n and $x_n \to a$.
 - (b) Prove that 1 is a limit point of D = (1, 3].
 - (c) Prove that 2 is not a limit point of $D=(-1,1)\cup\{2\}.$